Lect. 5: PN Junction Diode

What is a PN junction diode?

Questions:
Why the I-V characteristics?
I-V characteristics What circuit applications?

Lect. 5: PN Junction Diode

Do currents flow when two terminals are shorted?

Diffusion of holes (P to N) and electrons (N to P)
\rightarrow Diffusion currents (due to diffusion) to the right

Lect. 5: PN Junction Diode

Diffusion causes depletion of carriers
\rightarrow depletion region
Depletion layer provides built-in E-field
Built-in E-field produces drift current

$$
I_{\text {total }}=I_{\text {diffusion }}+I_{\text {drift }}=0
$$

No currents due to balance between diffusion and drift currents

Lect. 5: PN Junction Diode

With bias voltage,
Balance between diffusion and drift currents is broken.
V >0 : Forward Bias

$$
I_{\text {diffusion }} \gg I_{\text {drift }}
$$

$\rightarrow I_{D}>0$, very large currents if V is sufficiently large

V<0: Reverse Bias
$I_{\text {diffusion }}<I_{\text {drift }}$,

$\rightarrow \mathrm{I}_{\mathrm{D}}<0$, but very little currents until breakdow

Lect. 5: PN Junction Diode

With more detailed analyses

$$
\begin{gathered}
i=I_{S}\left[\exp \left(v / V_{T}\right)-1\right] \\
\left(v>-V_{B D}\right) \\
I_{S}: \text { saturation current } \\
\text { usually very small } \\
V_{T}: \text { thermal voltage } \\
\left(=\frac{\mathrm{kT}}{\mathrm{q}} \sim 25 \mathrm{mV} \text { at Room Temp. }\right) \\
\mathrm{V}_{\mathrm{BD}}: \text { Breakdown voltage }
\end{gathered}
$$

Lect. 5: PN Junction Diode

Diode circuit analysis

(a)

What are $\mathrm{v}_{\mathrm{D}}, \mathrm{i}_{\mathrm{D},}, \mathrm{v}_{\mathrm{O}}$ as function of v_{l} ?

Lect. 5: PN Junction Diode

Node analysis: 3 unknows

Can we solve it?

Computers can \rightarrow SPICE

Lect. 5: PN Junction Diode

Graphical analysis (load line analysis)

(a)

Electronic Circuits 1 (09/2)

$$
\begin{aligned}
& i_{D}=\frac{v_{O}}{R}=\frac{v_{I}-v_{D}}{R} \\
& i_{D}=I_{S}\left[\exp \left(v_{\mathrm{D}} / V_{T}\right)-1\right]
\end{aligned}
$$

Graph for every circuit problem?

Lect. 5: PN Junction Diode

Diode is either On (Short) or Off (Open)

$$
\begin{aligned}
& \text { If } i_{D}>0 \text { (Diode On), } v_{D}=0 \text { (short) } \quad \rightarrow \text { Ideal diode model } \\
& \text { If } v_{D}<0 \text { (Diode Off), } i_{D}=0 \text { (open) }
\end{aligned}
$$

Lect. 5: PN Junction Diode

(a)

Assume diode on, $v_{D}=0, v_{O}=v_{I}$

$$
i_{D}=\frac{v_{I}}{R}>0 \quad \therefore v_{I}>0
$$

$$
v_{D}=v_{I}-v_{O}<0 \therefore v_{I}<0
$$

$$
\begin{aligned}
& \text { If } i_{D}>0 \text { (Diode On), } v_{D}=0 \text { (short) } \\
& \text { If } v_{D}<0 \text { (Diode Off), } i_{D}=0 \text { (open) }
\end{aligned}
$$

Lect. 5: PN Junction Diode

$$
\begin{aligned}
& \text { If } i_{D}>0 \text { (Diode On), } v_{D}=0 \text { (short) } \\
& \text { If } v_{D}<0 \text { (Diode Off), } i_{D}=0 \text { (open) }
\end{aligned}
$$

Determine I, V using the ideal diode model

Lect. 5: PN Junction Diode

$$
\begin{aligned}
& \text { If } i_{D}>0 \text { (Diode On), } v_{D}=0 \text { (short) } \\
& \text { If } v_{D}<0 \text { (Diode Off), } i_{D}=0 \text { (open) }
\end{aligned}
$$

Lect. 5: PN Junction Diode

Homework (Due on 9/14 before tutorial):

- Prob. 3.9 in Razabi

