Lect. 5: PN Junction Diode (Razavi 2.2, 3.1)

Do currents flow when two terminals are shorted?

Diffusion of holes (P to N) and electrons (N to P)

 \rightarrow Diffusion currents (due to diffusion) to the right

Diffusion causes depletion of carriers→ depletion region

Depletion layer provides built-in E-field

Built-in E-field produces drift current

$$I_{\text{total}} = I_{\text{diffusion}} + I_{\text{drift}} = 0$$

No currents due to balance between diffusion and drift currents

With bias voltage,

Balance between diffusion and drift currents is broken.

V>0: Forward Bias

- $|_{diffusion} >> |_{drift}$
- ➔ I_D>0, very large currents if V is sufficiently large

V<0: Reverse Bias

 $\begin{array}{c} \begin{array}{c} & & & \\ & & \\ & \\ & \\ \end{array} \end{array}$

 $|_{diffusion} < |_{drift}$

➔ I_D<0, but very little currents until breakdow

Prof. Woo-Young Choi

With more detailed analyses

$$i = I_{S}[\exp(\frac{v}{V_{T}}) - 1]$$
$$(v > -V_{BD})$$

 I_s : saturation current usually very small

$$V_T$$
: thermal voltage
(= $\frac{kT}{q} \sim 25$ mV at Room Temp.)

V_{BD}: Breakdown voltage

Diode circuit analysis

What are v_D , $i_{D,}$, v_O as function of v_I ?

Node analysis: 3 unknows

$$v_{I} - v_{D} - v_{O} = 0$$
$$v_{O} = i_{D} \cdot R$$
$$i_{D} = I_{S} [\exp(\frac{v_{D}}{V_{T}}) - 1]$$

(Assume V_{BD} is very large)

Computers can \rightarrow SPICE

Electronic Circuits 1 (09/2)

Prof. Woo-Young Choi

Graphical analysis (load line analysis)

Electronic Circuits 1 (09/2)

If $i_D > 0$ (Diode On), $v_D = 0$ (short) If $v_D < 0$ (Diode Off), $i_D = 0$ (open)

➔ Ideal diode model

If $i_D > 0$ (Diode On), $v_D = 0$ (short) If $v_D < 0$ (Diode Off), $i_D = 0$ (open)

Determine I, V using the ideal diode model

If $i_D > 0$ (Diode On), $v_D = 0$ (short) If $v_D < 0$ (Diode Off), $i_D = 0$ (open)

Homework (Due on 9/14 before tutorial):

- Prob. 3.9 in Razabi

